Populations in developed nations throughout the world are rapidly aging, and the search for geroprotectors, or anti-aging interventions, has never been more important. Yet while hundreds of geroprotectors have extended lifespan in animal models, none have yet been approved for widespread use in humans. GeroScope is a computational tool that can aid prediction of novel geroprotectors from existing human gene expression data. GeroScope maps expression differences between samples from young and old subjects to aging-related signaling pathways, then profiles pathway activation strength (PAS) for each condition. Known substances are then screened and ranked for those most likely to target differential pathways and mimic the young signalome. Here we used GeroScope and shortlisted ten substances, all of which have lifespan-extending effects in animal models, and tested 6 of them for geroprotective effects in senescent human fibroblast cultures. PD-98059, a highly selective MEK1 inhibitor, showed both life-prolonging and rejuvenating effects. Natural compounds like N-acetyl-L-cysteine, Myricetin and Epigallocatechin gallate also improved several senescence-associated properties and were further investigated with pathway analysis. This work not only highlights several potential geroprotectors for further study, but also serves as a proof-of-concept for GeroScope, Oncofinder and other PAS-based methods in streamlining drug prediction, repurposing and personalized medicine.
Keywords: aging; drug discovery; drug repurposing; geroprotector; screening.