The aim of the present study was to compare technetium-99m-(polyethylene glycol-4)3-(Arg-Gly-Asp)2 (99mTc-3P4-RGD2) single-photon emission computed tomography (SPECT) and computed tomography (CT) in the noninvasive differentiation of solitary pulmonary nodules (SPNs). The present study prospectively investigated a consecutive series of 24 patients with SPN, who were newly diagnosed using radiography between September 2012 and January 2014. All patients underwent 99mTc-3P4-RGD2 SPECT and CT scans using a dual-head variable-angle γ-camera equipped with high-resolution collimators. A blinded panel of two thoracic radiologists for CT and three nuclear physicians for SPECT analyzed the images using a 5-grade scale. The SPECT images were also semi-quantitatively evaluated using tumor to non-tumor localization ratios (T/NT). The results were verified by pathological examination of the biopsy material obtained from each patient with SPN, and receiver operating characteristic (ROC) curves were generated from these results. The present results revealed that there were 17 malignant and 7 benign SPNs among the 24 patients with SPN. The mean size of the SPN was 2.1±0.6 cm. Sensitivity of visual analysis for SPECT and CT were 100.0 and 82.4%, respectively, and specificity was 71.4% for the two methods. When the T/NT SPECT semiquantitative analysis (ratio, 1.64) was used as a cut-off, the sensitivity and specificity of SPECT were 100.0 and 71.4%, respectively. The areas under the ROC curves were 0.840 for visual analysis of SPECT [95% confidence interval (CI), 0.600-1.000], 0.849 for semiquantitative analysis of SPECT (95% CI, 0.618-1.000) and 0.815 for CT (95% CI, 0.626-1.000). In conclusion, the present results suggest that 99mTc-3P4-RGD2 SPECT is more accurate than CT in the detection of malignant SPN, and visual analysis appears to be sufficient for the characterization of SPN.
Keywords: 99mTc-3P4-RGD2; SPECT/CT; solitary pulmonary nodule.