The field of photovoltaics is undergoing a surge of interest following the recent discovery of the lead hybrid perovskites as a remarkably efficient class of solar absorber. Of these, methylammonium lead iodide (MAPI) has garnered significant attention due to its record breaking efficiencies, however, there are growing concerns surrounding its long-term stability. Many of the excellent properties seen in hybrid perovskites are thought to derive from the 6s2 electronic configuration of lead, a configuration seen in a range of post-transition metal compounds. In this review we look beyond MAPI to other ns2 solar absorbers, with the aim of identifying those materials likely to achieve high efficiencies. The ideal properties essential to produce highly efficient solar cells are discussed and used as a framework to assess the broad range of compounds this field encompasses. Bringing together the lessons learned from this wide-ranging collection of materials will be essential as attention turns toward producing the next generation of solar absorbers.