Purpose: Immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is an extremely rare autosomal recessive disease. The immune phenotype is characterized by hypogammaglobulinemia in the presence of B cells. T cell lymphopenia also develops in some patients. We sought to further investigate the immune defect in an ICF patient with a novel missense mutation in DNMT3B and a severe phenotype.
Methods: Patient lymphocytes were examined for subset counts, immunoglobulin levels, T and B cell de novo production (via excision circles) and receptor repertoire diversity. Mutated DNMT3B protein structure was modeled to assess the effect of a mutation located outside of the catalytic region on protein function.
Results: A novel homozygous missense mutation, Ala585Thr, was found in DNMT3B. The patient had decreased B cell counts with hypogammaglobulinemia, and normal T cell counts. CD4+ T cells decreased over time, leading to an inversion of the CD4+ to CD8+ ratio. Excision circle copy numbers were normal, signifying normal de novo lymphocyte production, but the ratio between naïve and total B cells was low, indicating decreased in vivo B cell replication. T and B cell receptor repertoires displayed normal diversity. Computerized modeling of the mutated Ala585 residue suggested reduced thermostability, possibly affecting the enzyme kinetics.
Conclusions: Our results highlight the existence of a T cell defect that develops over time in ICF patient, in addition to the known B cell dysfunction. With intravenous immunoglobulin (IVIG) treatment ameliorating the B cell defect, the extent of CD4+ lymphopenia may determine the severity of ICF immunodeficiency.
Keywords: DNMT3B; ICF; Immunodeficiency; KREC; TREC; centromeric instability and facial anomalies syndrome; hypogammaglobulinemia.