Objectives: To portray the stage characteristics of lung cancers detected in CT screenings, and explore whether there's universal stage superiority over other methods for various pathological types using available data worldwide in a meta-analysis approach.
Materials and methods: EMBASE and MEDLINE were searched for studies on lung cancer CT screening in natural populations through July 2015 without language or other filters. Twenty-four studies (8 trials and 16 cohorts) involving 1875 CT-detected lung cancer patients were enrolled and assessed by QUADAS-2. Pathology-confirmed stage information was carefully extracted by two reviewers. Stage I or limited stage proportions were pooled by random effect model with Freeman-Tukey double arcsine transformation.
Results: Pooled stage I cancer proportion in CT screenings was 73.2% (95% confidence interval: 68.6%, 77.5%), with a significant rising trend (Ptrend<0.05) from baseline (64.7%) to ≥5 repeat rounds (87.1%). Relative to chest radiograph and usual care, the increased stage I proportions in CT were 12.2% (P>0.05), and 46.5% (P<0.05), respectively. Pathology-specifically, adenocarcinomas (66%) and squamous cell lung cancers (17%) composed the majority of CT-detected lung cancers, and had significantly higher stage I proportions relative to chest radiograph (bronchioloalveolar adenocarcinomas, 80.9% vs 51.4%; other adenocarcinomas, 58.8% vs 38.3%; squamous cell lung cancers, 52.3% vs 38.3%; all P<0.05). However, the percentage of small cell lung cancer was lower using CT than other detection routes, and no significant difference in limited stage proportion was observed (6.8% vs 10.8%, P>0.05).
Conclusion: CT screening can detect more early stage non-small cell lung cancers, but not all of them could be beneficial as there are a considerable number of indolent ones such as bronchioloalveolar adenocarcinomas. Still, current evidence is lacking regarding small cell lung cancers.