Validations of calibration-free measurements of electron temperature using double-pass Thomson scattering diagnostics from theoretical and experimental aspects

Rev Sci Instrum. 2016 Sep;87(9):093502. doi: 10.1063/1.4961476.

Abstract

This paper evaluates the accuracy of electron temperature measurements and relative transmissivities of double-pass Thomson scattering diagnostics. The electron temperature (Te) is obtained from the ratio of signals from a double-pass scattering system, then relative transmissivities are calculated from the measured Te and intensity of the signals. How accurate the values are depends on the electron temperature (Te) and scattering angle (θ), and therefore the accuracy of the values was evaluated experimentally using the Large Helical Device (LHD) and the Tokyo spherical tokamak-2 (TST-2). Analyzing the data from the TST-2 indicates that a high Te and a large scattering angle (θ) yield accurate values. Indeed, the errors for scattering angle θ = 135° are approximately half of those for θ = 115°. The method of determining the Te in a wide Te range spanning over two orders of magnitude (0.01-1.5 keV) was validated using the experimental results of the LHD and TST-2. A simple method to provide relative transmissivities, which include inputs from collection optics, vacuum window, optical fibers, and polychromators, is also presented. The relative errors were less than approximately 10%. Numerical simulations also indicate that the Te measurements are valid under harsh radiation conditions. This method to obtain Te can be considered for the design of Thomson scattering systems where there is high-performance plasma that generates harsh radiation environments.