The purpose of the present study was to determine whether mitochondrial function is limited by O2 availability or the intrinsic capacity of mitochondria to synthesize ATP in elderly individuals. To this aim, we examined, in comparison to free-flow conditions (FF), the effect of superimposing reactive hyperemia (RH), induced by a period of brief ischemia during the last min of exercise, on O2 availability and mitochondrial function in the calf muscle. 12 healthy, untrained, elderly subjects performed dynamic plantar flexion exercise and phosphorus magnetic resonance spectroscopy (31P-MRS), near-infrared spectroscopy (NIRS), and Doppler ultrasound were used to assess muscle metabolism and peripheral hemodynamics. Limb blood flow [area under the curve (AUC), FF: 1.5±0.5L; RH: 3.2±1.1L, P<0.01] and convective O2 delivery (AUC, FF: 0.30±0.13L; RH: 0.64±0.29L, P<0.01) were significantly increased in RH in comparison to FF. RH was also associated with significantly higher capillary blood flow (P<0.05) and this resulted in a 33% increase in estimated peak mitochondrial ATP synthesis rate (FF: 24±11 mM.min-1; RH: 31±7 mM.min-1, P<0.05). These results document a hemodynamic reserve in the contracting calf muscle of the elderly accessible by superimposing reactive hyperemia. Furthermore, this increase in O2 availability enhanced mitochondrial function thus indicating a skeletal muscle metabolic reserve despite advancing age and low level of physical activity.
Keywords: O availability 2; P-MRS 31; PCr recovery kinetics; aging; mitochondrial ATP synthesis.