The transcription factor ISGF3, comprised of IRF9 and tyrosine-phosphorylated STATs 1 and 2, transmits the signal from the type I interferon receptor to the genome. We have discovered a novel phosphorylation of STAT2 on T387 that negatively regulates this response. In most untreated cell types, the majority of STAT2 is phosphorylated on T387 constitutively. In response to interferon-β, the T387A mutant of STAT2 is much more effective than wild-type STAT2 in mediating the expression of many interferon-stimulated genes, in protecting cells against virus infection, and in inhibiting cell growth. Interferon-β-treated cells expressing wild-type STAT2 contain much less ISGF3 capable of binding to an interferon-stimulated response element than do cells expressing T387A STAT2. T387 lies in a cyclin-dependent kinase (CDK) consensus sequence, and CDK inhibitors decrease T387 phosphorylation. Using CDK inhibitors to reverse the constitutive inhibitory phosphorylation of T387 of U-STAT2 might enhance the efficacy of type I interferons in many different clinical settings.
Keywords: STAT2; T387 phosphorylation; negative regulation; type I interferon.
© 2016 The Authors.