The Enterovirus A71 (EV-A71) subgenogroup C4 is prevalent in China. EV-A71 causes hand, foot and mouth disease (HFMD) in children and may lead to severe neurological diseases. The development of antiviral and protective vaccines against EV-A71 is significantly hindered by the lack of suitable animal models to recapitulate human neurological symptoms. In this study, GZ-CII, a highly virulent EV-A71 subgenogroup C4 strain, was isolated from hospitalized children with HFMD. Intraperitoneal infections of GZ-CII resulted in progressive neurological disease in mice as old as 14 days. Administration of an inactivated EV-A71 vaccine or an anti-EV-A71 immune serum protected the mice against the GZ-CII infection. This demonstrated that a mouse model with EV-A71 GZ-CII could be used to evaluate potential vaccine candidates and therapeutics for subgenogroup C4. Comparing the genome sequence of GZ-CII with that of the avirulent EV-A71 subgenogroup C4 strain revealed unique mutations in GZ-CII. When mutation VP2-K149I was introduced into the nonpathogenic EV-A71 subgenogroup C4 strain, the variant similar to GZ-CII significantly increased viral replication and virulence in mice. These results indicated that the VP2-K149I mutation played an important role in enhancing the virulence of the EV-A71 subgenogroup C4 strain in mice, and that mice infected with the GZ-CII strain are a promising model for evaluating vaccines and therapeutics against the EV-A71 subgenogroup C4.
Keywords: Enterovirus A71 (EV-A71); Mouse infection model; Primary isolate; Vaccine.
Copyright © 2016 Elsevier B.V. All rights reserved.