Nonvolatile redox transistors (NVRTs) based upon Li-ion battery materials are demonstrated as memory elements for neuromorphic computer architectures with multi-level analog states, "write" linearity, low-voltage switching, and low power dissipation. Simulations of backpropagation using the device properties reach ideal classification accuracy. Physics-based simulations predict energy costs per "write" operation of <10 aJ when scaled to 200 nm × 200 nm.
Keywords: data storage; nanodevices; transistors.
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.