Myeloid-derived suppressor cells (MDSCs) are a population of immature myeloid cells defined by their immunosuppression. Elevated levels of certain soluble cytokines in tumor microenvironment, such as IL-6 and IL-10, contribute to the recruitment and accumulation of tumor-associated MDSCs. In turn, MDSCs secret IL-6 and IL-10 and form a positive self-feedback to promote self-expansion. MDSCs also release other soluble cytokines such as TGF-β and chemokines to exert their suppressive function by induction of regulatory T cells. Exhaustion of some amino acids by MDSCs with many secretory enzymes or membrane transporters as well as their metabolites leads to blockage of T cells development. The interaction of membrane molecules on MDSCs and T cells leads inactivation and apoptosis of T cells. There may be one or some dominant mechanism(s) by which MDSCs impair the immune system in different tumor microenvironment. Thus, it is important to identify the subpopulations of MDSCs and clarify the dominant mechanism(s) through which MDSCs inhibit antitumor immunity in order to establish a more individual immunotherapy by eliminating MDSCs-mediated suppression. Currently studies concentrated on therapeutic strategies targeting MDSCs have obtained promising results. However, more studies are needed to demonstrate their clinical safety and efficacy.
Keywords: Cancer; Immune suppression; Myeloid-derived suppressor cell; T cell; Targeted therapy.
Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.