Muscle damage and loss of muscle mass are triggered by immobilization, loss of appetite, dystrophies and chronic wasting diseases. In addition, physical exercise causes muscle damage. In damaged muscle, the N-terminal and C-terminal regions of titin, a giant sarcomere protein, are cleaved by calpain-3, and the resulting fragments are excreted into the urine via glomerular filtration. Therefore, we considered titin fragments as promising candidates for reliable and non-invasive biomarkers of muscle injury. Here, we established a sandwich ELISA that can measure the titin N-terminal fragment over a biologically relevant range of concentrations, including those in urine samples from older, non-ambulatory Duchenne muscular dystrophy patients and from healthy donors under everyday life conditions and after exercise. Our results indicate that the established ELISA could be a useful tool for the screening of muscular dystrophies and also for monitoring the progression of muscle disease, evaluating the efficacy of therapeutic approaches, and investigating exercise-related sarcomeric disruption and repair processes.