Objective: Some observational studies have suggested an association between the use of hormonal contraceptives (HC) and HIV acquisition. One major concern is that differential misreporting of sexual behavior between HC users and nonusers may generate artificially inflated risk estimates.
Study design: We developed an individual-based model that simulates the South African HIV serodiscordant couples analyzed for HC-HIV risk by Heffron et al. (2012). We varied the pattern of misreporting condom use between HC users and nonusers and reproduced the trial data under the assumption that HC use is not associated with HIV risk. The simulated data were analyzed using Cox proportional hazards models, adjusting for the reported level of condom use.
Results: If HC users overreport condom use more than nonusers, an apparent excess risk could be observed even without any biological effect of HC on HIV acquisition. With 45% overreporting by HC users (i.e., 9 out of every 20 sex acts reported with condoms are actually unprotected) and accurate condom reporting by nonusers, a true null effect can be inflated to give an observed hazard ratio (HR̂) of 2.0. In a different population with lower overall reported condom use, artificially high HR̂s can only be generated if non-HC users underreport condom use.
Conclusion: Differential condom misreporting can theoretically produce inflated HR̂ values for an association between HC and HIV even without a true association. However, to produce a doubling of HIV risk that is entirely spurious requires substantially different levels of misreporting among HC users and nonusers, which may be unrealistic.
Implications: Considerably differential amounts of condom use misreporting by HC users and nonusers would be needed to produce entirely spurious observed levels of excess HIV acquisition risk among HC users when there is actually no true association.
Keywords: Condom use; DMPA; HIV; Injectable hormonal contraceptives; Mathematical modelling; Misreporting bias.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.