The delta opioid receptor (DOPr) is known to be mainly expressed in intracellular compartments. It remains unknown why DOPr is barely exported to the cell surface, but it seems that a substantial proportion of the immature receptor is trapped within the endoplasmic reticulum (ER) and the Golgi network. In the present study, we performed LC-MS/MS analysis to identify putative protein partners involved in the retention of DOPr. Analysis of the proteins co-immunoprecipitating with Flag-DOPr in transfected HEK293 cells revealed the presence of numerous subunits of the coatomer protein complex I (COPI), a vesicle-coating complex involved in recycling resident proteins from the Golgi back to the ER. Further analysis of the amino acid sequence of DOPr identified multiple consensus di-lysine and di-arginine motifs within the intracellular segments of DOPr. Using cell-surface ELISA and GST pulldown assays, we showed that DOPr interacts with COPI through its intracellular loops 2 and 3 (ICL2 and ICL3, respectively) and that the mutation of the K164AK166 (ICL2) or K250EK252 (ICL3) putative COPI binding sites increased the cell-surface expression of DOPr in transfected cells. Altogether, our results indicate that COPI is a binding partner of DOPr and provide a putative mechanism to explain why DOPr is highly retained inside the cells.
Keywords: Coatomer protein complex I; Delta opioid receptor; Endoplasmic reticulum export; G protein-coupled receptor; Protein sorting; Receptor trafficking; cis-Golgi.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.