Landing is a common lower extremity injury mechanism in sport, with potential connections to movement control accessed through variability measures. We investigated intra-subject lower extremity variability changes following drop-landing height manipulations using standard deviation (SD) and coefficient of variation (CV) among lower extremity peak sagittal joint angles and moments. Fourteen healthy participants completed five drop-landing trials from five heights 20%, 60%, 100%, 140% and 180% maximum vertical jump height (MVJH). Peak joint angles and moments increased with greater landing height (p < 0.001), highlighting inter-joint differences (Flexion: Knee > Hip > Ankle, p < 0.001; Extensor Moment: Hip > Knee > Ankle, in excess of 60% MVJH, p < 0.05). Kinematic and kinetic SD increased with variable magnitudes, while CV decreased at greater landing heights (p ≤ 0.016). Decreased relative variability under greater task demands may underscore non-contact injury mechanisms from repetitive loading of identical structures.
Keywords: Intra-subject; joint angle; joint moment; sagittal.