Three novel 1,3,4-tiadiazole-derived compounds with biological-activity, i.e., 4-(5-(methylamino)-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (MDFT), 4-(5-(phenylamino)-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (PhATB), and 4-(5-(4-chlorophenylamino)-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (4-CIPhATB) were characterized with the use of several spectroscopic methods. Detailed UV-vis studies revealed keto/enol tautomerism of the examined compounds. The absorption spectra recorded in nonpolar solvents exhibited bands that were characteristic of keto tautomers, while in polar solvents the enol form is predominant. A number of spectra revealed the presence of both tautomeric forms in the solution. The keto/enol equilibria observed were both solvent- and temperature-dependent. The keto/enol equilibrium was also observed using FTIR spectroscopy. A detailed analysis of the spectroscopic data leads to a conclusion that the solvent-induced tautomerism of the selected compounds from the 1,3,4-thiadiazole group does not depend on the electric dipole moment of the solvent but more likely on its average electric polarizability. Additionally, a clear effect of the substituent present in the molecule on the tautomeric equilibrium in the selected 1,3,4-thiadiazole analogues was noted.