Here we report the first evidence for a reversible phase change in an ethanethiol ice prepared under astrochemical conditions. InfraRed (IR) spectroscopy was used to monitor the morphology of the ice using the SH stretching vibration, a characteristic vibration of thiol molecules. The deposited sample was able to switch between amorphous and crystalline phases repeatedly under temperature cycles between 10K and 130K with subsequent loss of molecules in every phase change. Such an effect is dependent upon the original thickness of the ice. Further work on quantitative analysis is to be carried out in due course whereas here we are reporting the first results obtained.
Keywords: Astrochemistry; Infrared spectroscopy; Reversible phase change.
Copyright © 2017 Elsevier B.V. All rights reserved.