Aims: Cardiovascular magnetic resonance (CMR) has dramatically changed the clinical practice in thalassemia major (TM), lowering cardiac complications. We prospectively reassessed the predictive value of CMR parameters for heart failure (HF) and arrhythmias in TM.
Methods and results: We considered 481 white TM patients (29.48 ± 8.93 years, 263 females) enrolled in the Myocardial Iron Overload in Thalassemia (MIOT) network. Myocardial and liver iron overload were measured by T2* multiecho technique. Atrial dimensions and biventricular function were quantified by cine images. Late gadolinium enhancement images were acquired to detect myocardial fibrosis. Mean follow-up was 57.91 ± 18.23 months. After the first CMR scan 69.6% of the patients changed chelation regimen. We recorded 18 episodes of HF. In the multivariate analysis the independent predictive factors were myocardial fibrosis (HR = 10.94, 95% CI = 3.28-36.43, P < 0.0001), homogeneous MIO (compared with no MIO) (HR = 5.56, 95% CI = 1.37-22.51, P = 0.016), ventricular dysfunction (HR = 4.33, 95% CI = 1.39-13.43, P = 0.011). Arrhythmias occurred in 16 patients. Among the CMR parameters only the atrial dilation was identified as univariate prognosticator (HR = 4.26 95% CI=1.54-11.75, P = 0.005).
Conclusions: CMR guided the change of chelation therapy in nearly 70% of patients, leading to a lower risk of iron-mediated HF and of arrhythmias than previously reported. Homogeneous MIO remained a risk factor for HF but also myocardial fibrosis and ventricular dysfunction identified patients at high risk. Arrhythmias were independent of MIO but increased with atrial dilatation. CMR by a multi-parametric approach dramatically improves cardiac outcomes and provides prognostic information beyond cardiac iron estimation.
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.