Auto-phosphorylation Represses Protein Kinase R Activity

Sci Rep. 2017 Mar 10:7:44340. doi: 10.1038/srep44340.

Abstract

The central role of protein kinases in controlling disease processes has spurred efforts to develop pharmaceutical regulators of their activity. A rational strategy to achieve this end is to determine intrinsic auto-regulatory processes, then selectively target these different states of kinases to repress their activation. Here we investigate auto-regulation of the innate immune effector protein kinase R, which phosphorylates the eukaryotic initiation factor 2α to inhibit global protein translation. We demonstrate that protein kinase R activity is controlled by auto-inhibition via an intra-molecular interaction. Part of this mechanism of control had previously been reported, but was then controverted. We account for the discrepancy and extend our understanding of the auto-inhibitory mechanism by identifying that auto-inhibition is paradoxically instigated by incipient auto-phosphorylation. Phosphor-residues at the amino-terminus instigate an intra-molecular interaction that enlists both of the N-terminal RNA-binding motifs of the protein with separate surfaces of the C-terminal kinase domain, to co-operatively inhibit kinase activation. These findings identify an innovative mechanism to control kinase activity, providing insight for strategies to better regulate kinase activity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Binding Sites
  • Cloning, Molecular
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Eukaryotic Initiation Factor-2 / chemistry*
  • Eukaryotic Initiation Factor-2 / genetics
  • Eukaryotic Initiation Factor-2 / immunology
  • Eukaryotic Initiation Factor-2 / metabolism
  • Gene Expression
  • Genetic Vectors / chemistry
  • Genetic Vectors / metabolism
  • Humans
  • Immunity, Innate
  • Models, Molecular
  • Phosphorylation
  • Protein Binding
  • Protein Conformation, alpha-Helical
  • Protein Conformation, beta-Strand
  • Protein Interaction Domains and Motifs
  • Recombinant Fusion Proteins / chemistry*
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / immunology
  • Recombinant Fusion Proteins / metabolism
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / immunology
  • Recombinant Proteins / metabolism
  • Sequence Alignment
  • Sequence Homology, Amino Acid
  • eIF-2 Kinase / chemistry*
  • eIF-2 Kinase / genetics
  • eIF-2 Kinase / immunology
  • eIF-2 Kinase / metabolism

Substances

  • Eukaryotic Initiation Factor-2
  • Recombinant Fusion Proteins
  • Recombinant Proteins
  • EIF2AK2 protein, human
  • eIF-2 Kinase