Increased CO2 and nutrient status changes affect phytomass and the production of plant defensive secondary chemicals in Salix myrsinifolia (Salisb.)

Oecologia. 1993 Oct;95(4):495-498. doi: 10.1007/BF00317433.

Abstract

The effect of CO2 enrichment (700 and 1050 ppm) on phytomass, soluble sugars, leaf nitrogen and secondary chemicals of three Salix myrsinifolia clones was studied in plants cultivated at very poor (sand seedlings) and moderate (peat seedlings) nutrient availability and under low illumination. The total shoot phytomass production of sand scedlings was less than 10% of that of the peat seedlings. Carbon dioxide increased the total shoot phytomass of peat seedlings. When the ambient carbon supply was doubled (to 700 ppm) the growth of sand seedlings was slightly enhanced but 1050 ppm CO2 gave growth figures similar to those at the control CO2 level. Leaf nitrogen content and total soluble sugar contents were significantly higher in peat seedlings than in sand seedlings. Leaf nitrogen showed a decreasing trend in relation to CO2 increase. On the other hand, CO2 did not have any clear-cut effect on total sugars. At the control CO2 level the content of salicortin, which is a dynamic phenolic, was higher in the peat seedlings than in the sand seedlings, but salicin showed the opposite trend. CO2 enrichment considerably decreased these phenolics in the peat seedlings. At the control CO2 level, the content of more static phenolics, such as proanthocyanidins, was higher in sand seedlings. An increased carbon supply considerably increased static phenolics in the peat seedlings. Willow defence against generalist herbivores is moderately decreased by enhancement of atmospheric carbon dioxide.

Keywords: CO2 increase; Primary metabolites; Salicaceae; Salix myrsinifolia; Secondary metabolites.