"Precision" trials, using rationally incorporated biomarker targets and molecularly selective anticancer agents, have become of great interest to both patients and their physicians. In the endeavor to test the cornerstone premise of precision oncotherapy, that is, determining if modulating a specific molecular aberration in a patient's tumor with a correspondingly specific therapeutic agent improves clinical outcomes, the design of clinical trials with embedded genomic characterization platforms which guide therapy are an increasing challenge. The National Cancer Institute Precision Medicine Initiative is an unprecedented large interdisciplinary collaborative effort to conceptualize and test the feasibility of trials incorporating sequencing platforms and large-scale bioinformatics processing that are not currently uniformly available to patients. National Cancer Institute-Molecular Profiling-based Assignment of Cancer Therapy and National Cancer Institute-Molecular Analysis for Therapy Choice are 2 genomic to phenotypic trials under this National Cancer Institute initiative, where treatment is selected according to predetermined genetic alterations detected using next-generation sequencing technology across a broad range of tumor types. In this article, we discuss the objectives and trial designs that have enabled the public-private partnerships required to complete the scale of both trials, as well as interim trial updates and strategic considerations that have driven data analysis and targeted therapy assignment, with the intent of elucidating further the benefits of this treatment approach for patients.
Keywords: Actionable mutation; Anticancer; Precision medicine.
Copyright © 2017. Published by Elsevier Inc.