Surveys for crown rot (FCR) and head blight (FHB) of Algerian wheat conducted during 2014 and 2015 revealed that Fusarium culmorum strains producing 3-acetyl-deoxynivalenol (3ADON) or nivalenol (NIV) were the causal agents of these important diseases. Morphological identification of the isolates (n FCR=110, n FHB=30) was confirmed by sequencing a portion of TEF1. To assess mating type idiomorph, trichothecene chemotype potential and global population structure, the Algerian strains were compared with preliminary sample of F. culmorum from Italy (n=27), Australia (n=30) and the United States (n=28). A PCR assay for MAT idiomorph revealed that MAT1-1 and MAT1-2 strains were segregating in nearly equal proportions, except within Algeria where two-thirds of the strains were MAT1-2. An allele-specific PCR assay indicated that the 3ADON trichothecene genotype was predominant globally (83.8% 3ADON) and in each of the four countries sampled. In vitro toxin analyses confirmed trichothecene genotype PCR data and demonstrated that most of the strains tested (77%) produced culmorin. Global population genetic structure of 191 strains was assessed using nine microsatellite markers (SSRs). AMOVA of the clone corrected data indicated that 89% of the variation was within populations. Bayesian analysis of the SSR data identified two globally distributed, sympatric populations within which both trichothecene chemotypes and mating types were represented.
Keywords: 3-Acetyl-deoxynivalenol; Culmorin; Mating type; Mycotoxins; Nivalenol; SSR markers.
Copyright © 2017. Published by Elsevier Inc.