Out-of-field doses from pediatric craniospinal irradiations using 3D-CRT, IMRT, helical tomotherapy and electron-based therapy

Phys Med Biol. 2017 Jul 7;62(13):5293-5311. doi: 10.1088/1361-6560/aa6c9e. Epub 2017 Apr 11.

Abstract

Medulloblastoma treatment involves irradiation of the entire central nervous system, i.e. craniospinal irradiation (CSI). This is associated with the significant exposure of large volumes of healthy tissue and there is growing concern regarding treatment-associated side effects. The current study compares out-of-field organ doses in children receiving CSI through 3D-conformal radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT), helical tomotherapy (HT) and an electron-based technique, and includes radiation doses resulting from imaging performed during treatment. An extensive phantom study is performed, using an anthropomorphic phantom corresponding to a five year old child, in which organ absorbed doses are measured using thermoluminescent detectors. Additionally, the study evaluates and explores tools for calculating out-of-field patient doses using the treatment planning system (TPS) and analytical models. In our study, 3D-CRT resulted in very high doses to a limited number of organs, while it was able to spare organs such as the lungs and breast when compared to IMRT and HT. Both IMRT and HT spread the dose over more organs and were able to spare the heart, thyroid, bladder, uterus and testes when compared to 3D-CRT. The electron-based technique considerably decreased the out-of-field doses in deep-seated organs but could not avoid nearby out-of-field organs such as the lungs, ribs, adrenals, kidneys and uterus. The daily imaging dose is small compared to the treatment dose burden. The TPS error for out-of-field doses was most pronounced for organs further away from the target; nevertheless, no systematic underestimation was observed for any of the studied TPS systems. Finally, analytical modeling was most optimal for 3D-CRT although the number of organs that could be modeled was limited. To conclude, none of the techniques studied was capable of sparing all organs from out-of-field doses. Nevertheless, the electron-based technique showed the most promise for out-of-field organ dose reduction during CSI when compared to photon techniques.

MeSH terms

  • Cerebellar Neoplasms / radiotherapy
  • Child
  • Craniospinal Irradiation / adverse effects
  • Craniospinal Irradiation / methods*
  • Electrons / therapeutic use*
  • Female
  • Humans
  • Medulloblastoma / radiotherapy
  • Organs at Risk / radiation effects
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted
  • Radiotherapy, Intensity-Modulated / adverse effects
  • Radiotherapy, Intensity-Modulated / methods*