Nonalcoholic steatohepatitis (NASH) is the most prevalent cause of chronic liver disease in the Western world. However, an optimum therapy for NASH is yet to be established, mandating more in-depth investigation into the molecular pathogenesis of NASH to identify novel regulatory molecules and develop targeted therapies. Here, we unravel a unique function of astrocyte elevated gene-1(AEG-1)/metadherin in NASH using a transgenic mouse with hepatocyte-specific overexpression of AEG-1 (Alb/AEG-1) and a conditional hepatocyte-specific AEG-1 knockout mouse (AEG-1ΔHEP ). Alb/AEG-1 mice developed spontaneous NASH whereas AEG-1ΔHEP mice were protected from high-fat diet (HFD)-induced NASH. Intriguingly, AEG-1 overexpression was observed in livers of NASH patients and wild-type (WT) mice that developed steatosis upon feeding HFD. In-depth molecular analysis unraveled that inhibition of peroxisome proliferator-activated receptor alpha activity resulting in decreased fatty acid β-oxidation, augmentation of translation of fatty acid synthase resulting in de novo lipogenesis, and increased nuclear factor kappa B-mediated inflammation act in concert to mediate AEG-1-induced NASH. Therapeutically, hepatocyte-specific nanoparticle-delivered AEG-1 small interfering RNA provided marked protection from HFD-induced NASH in WT mice.
Conclusion: AEG-1 might be a key molecule regulating initiation and progression of NASH. AEG-1 inhibitory strategies might be developed as a potential therapeutic intervention in NASH patients. (Hepatology 2017;66:466-480).
© 2017 by the American Association for the Study of Liver Diseases.