Due to weak interactions between micrometer-wavelength infrared (IR) light and nanosized samples, a high signal to noise ratio is a prerequisite in order to precisely characterize nanosized samples using IR spectroscopy. Traditional micrometer-thick window substrates, however, have considerable IR absorption which may introduce unavoidable deformations and interruptions to IR spectra of nanoscale samples. A promising alternative is the use of a suspended graphene substrate which has ultrahigh IR transmittance (>97.5%) as well as unique mechanical properties. Here, an effective method is presented for fabrication of suspended graphene over circular holes up to 150 µm in diameter to be utilized as a transparent substrate for IR spectroscopy. It is demonstrated that the suspended graphene has little impact on the measured IR spectra, an advantage which has led to the discovery of several missing vibrational modes of a 20 nm thick PEO film measured on a traditional CaF2 substrate. This can provide a better understanding of molecules' fine structures and status of hanging bands. The unique optical properties of suspended graphene are determined to be superior to those of conventional IR window materials, giving this new substrate great potential as part of a new generation of IR transparent substrates, especially for use in examining nanoscale samples.
Keywords: graphene transferring; infrared spectroscopy; infrared windows; suspended graphene; transparent substrates.
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.