Genome-wide association studies (GWASs) have identified a multitude of genetic loci involved with traits and diseases. However, it is often unclear which genes are affected in such loci and whether the associated genetic variants lead to increased or decreased gene function. To mitigate this, we integrated associations of common genetic variants in 57 GWASs with 24 studies of expression quantitative trait loci (eQTLs) from a broad range of tissues by using a Mendelian randomization approach. We discovered a total of 3,484 instances of gene-trait-associated changes in expression at a false-discovery rate < 0.05. These genes were often not closest to the genetic variant and were primarily identified in eQTLs derived from pathophysiologically relevant tissues. For instance, genes with expression changes associated with lipid traits were mostly identified in the liver, and those associated with cardiovascular disease were identified in arterial tissue. The affected genes additionally point to biological processes implicated in the interrogated traits, such as the interleukin-27 pathway in rheumatoid arthritis. Further, comparing trait-associated gene expression changes across traits suggests that pleiotropy is a widespread phenomenon and points to specific instances of both agonistic and antagonistic pleiotropy. For instance, expression of SNX19 and ABCB9 is positively correlated with both the risk of schizophrenia and educational attainment. To facilitate interpretation, we provide this lexicon of how common trait-associated genetic variants alter gene expression in various tissues as the online database GWAS2Genes.
Keywords: GWASs; Mendelian randomization; antagonistic pleiotropy; common genetic variation; complex diseases; complex traits; cross phenotype; eQTLs; expression quantitative trait loci; gene expression; gene-set enrichment analysis; genome-wide association studies.
Published by Elsevier Inc.