Despite the heterogeneity of acute myeloid leukemia (AML), overexpression of the interleukin-3 receptor-α (CD123) on both the more differentiated leukemic blast and leukemic stem cells (LSCs) provides a therapeutic target for antibody treatment. Here we present data on the potential clinical activity of the monoclonal antibody CSL362, which binds to CD123 with high affinity. We first validated the expression of CD123 by 100% (52/52) of patient samples and the correlation of NPM1 and FLT3-ITD mutations with the high frequency of CD123 in AML. In vitro studies demonstrated that CSL362 potently induced antibody-dependent cell cytotoxicity (ADCC) of AML blasts including CD34+CD38-CD123+ LSCs by natural killer cells (NKs). Importantly, compared with healthy donor (HD) NKs, NKs drawn from AML patients in remission had a comparable ADCC activity against leukemic cells; of note, during remission, immature NKs were five times higher in AML patients than that in HDs. Significantly, we report a case where leukemic cells were resistant to autologous ADCC; however, the blasts were effectively lysed by CSL362 together with donor-derived NKs after allogeneic hematopoietic stem cell transplantation. These studies highlight CSL362 as a promising therapeutic option following chemotherapy and transplant so as to improve the outcome of AML patients.