Observation of Enhanced Chiral Asymmetries in the Inner-Shell Photoionization of Uniaxially Oriented Methyloxirane Enantiomers

J Phys Chem Lett. 2017 Jul 6;8(13):2780-2786. doi: 10.1021/acs.jpclett.7b01000. Epub 2017 Jun 8.

Abstract

Most large molecules are chiral in their structure: they exist as two enantiomers, which are mirror images of each other. Whereas the rovibronic sublevels of two enantiomers are almost identical (neglecting a minuscular effect of the weak interaction), it turns out that the photoelectric effect is sensitive to the absolute configuration of the ionized enantiomer. Indeed, photoionization of randomly oriented enantiomers by left or right circularly polarized light results in a slightly different electron flux parallel or antiparallel with respect to the photon propagation direction-an effect termed photoelectron circular dichroism (PECD). Our comprehensive study demonstrates that the origin of PECD can be found in the molecular frame electron emission pattern connecting PECD to other fundamental photophysical effects such as the circular dichroism in angular distributions (CDAD). Accordingly, distinct spatial orientations of a chiral molecule enhance the PECD by a factor of about 10.