The innate immune mechanisms by which adjuvants enhance the potency and protection of vaccine-induced adaptive immunity are largely unknown. We introduce a model to delineate the steps of how adjuvant-driven innate immune activation leads to priming of vaccine responses using rhesus macaques. Fluorescently labeled HIV-1 envelope glycoprotein (Env) was administered together with the conventional aluminum salt (alum) adjuvant. This was compared to Env given with alum with preabsorbed Toll-like receptor 7 (TLR7) ligand (alum-TLR7) or the emulsion MF59 because they show superiority over alum for qualitatively and quantitatively improved vaccine responses. All adjuvants induced rapid and robust immune cell infiltration to the injection site in the muscle. This resulted in substantial uptake of Env by neutrophils, monocytes, and myeloid and plasmacytoid dendritic cells (DCs) and migration exclusively to the vaccine-draining lymph nodes (LNs). Although less proficient than monocytes and DCs, neutrophils were capable of presenting Env to memory CD4+ T cells. MF59 and alum-TLR7 showed more pronounced cell activation and overall higher numbers of Env+ cells compared to alum. This resulted in priming of higher numbers of Env-specific CD4+ T cells in the vaccine-draining LNs, which directly correlated with increased T follicular helper cell differentiation and germinal center formation. Thus, strong innate immune activation promoting efficient vaccine antigen delivery to infiltrating antigen-presenting cells in draining LNs is an important mechanism by which superior adjuvants enhance vaccine responses.
Copyright © 2017, American Association for the Advancement of Science.