A variety of bivalve mollusks (phylum Mollusca, class Bivalvia) constitute a prominent commodity in fisheries and aquacultures, but are also crucial in order to preserve our ecosystem's complexity and function. Bivalve mollusks, such as clams, mussels, oysters and scallops, are relevant bred species, and their global farming maintains a high incremental annual growth rate, representing a considerable proportion of the overall fishery activities. Bivalve mollusks are filter feeders; therefore by filtering a great quantity of water, they may bioaccumulate in their tissues a high number of microorganisms that can be considered infectious for humans and higher vertebrates. Moreover, since some pathogens are also able to infect bivalve mollusks, they are a threat for the entire mollusk farming industry. In consideration of the leading role in aquaculture and the growing financial importance of bivalve farming, much interest has been recently devoted to investigate the pathogenesis of infectious diseases of these mollusks in order to be prepared for public health emergencies and to avoid dreadful income losses. Several bacterial and viral pathogens will be described herein. Despite the minor complexity of the organization of the immune system of bivalves, compared to mammalian immune systems, a precise description of the different mechanisms that induce its activation and functioning is still missing. In the present review, a substantial consideration will be devoted in outlining the immune responses of bivalves and their repertoire of immune cells. Finally, we will focus on the description of antimicrobial peptides that have been identified and characterized in bivalve mollusks. Their structural and antimicrobial features are also of great interest for the biotechnology sector as antimicrobial templates to combat the increasing antibiotic-resistance of different pathogenic bacteria that plague the human population all over the world.
Keywords: antimicrobial peptides; bivalve immune system; marine bivalve mollusks.