We determined imipenem, imipenem-relebactam, ceftazidime, and ceftazidime-avibactam MICs against 100 CRE isolates that underwent whole-genome sequencing. Klebsiella pneumoniae carbapenemases (KPCs) were the most common carbapenemases. Forty-six isolates carried extended-spectrum β-lactamases (ESBLs). With the addition of relebactam, imipenem susceptibility increased from 8% to 88%. With the addition of avibactam, ceftazidime susceptibility increased from 0% to 85%. Neither imipenem-relebactam nor ceftazidime-avibactam was active against metallo-β-lactamase (MBL) producers. Ceftazidime-avibactam (but not imipenem-relebactam) was active against OXA-48-like producers, including a strain not harboring any ESBL. Major OmpK36 porin mutations were independently associated with higher imipenem-relebactam MICs (P < 0.0001) and showed a trend toward independent association with higher ceftazidime-avibactam MICs (P = 0.07). The presence of variant KPC-3 was associated with ceftazidime-avibactam resistance (P < 0.0001). In conclusion, imipenem-relebactam and ceftazidime-avibactam had overlapping spectra of activity and niches in which each was superior. Major OmpK36 mutations in KPC-K. pneumoniae may provide a foundation for stepwise emergence of imipenem-relebactam and ceftazidime-avibactam resistance.
Keywords: CRE; Enterobacteriaceae; KPC; ceftazidime-avibactam; drug resistance mechanisms; imipenem-relabactam; mechanisms of resistance; porins.
Copyright © 2017 American Society for Microbiology.