Diffusion tensor imaging (DTI) has often been used to examine white matter (WM) tract abnormalities in depressed subjects, but these studies have yielded inconsistent results, probably, due to gender composition or small sample size. In this study, we applied different analysis pipelines to a relatively large sample of individuals with depression to determine whether previous findings in depression can be replicated with these pipelines. We used a "standard" DTI algorithm and maps computed through a free-water (FW) corrected DTI. This latter algorithm is able to identify and separate the effects of extracellular FW on DTI metrics. Additionally, skeletonized and WM voxel-based analysis (VBA) methods were used. Using the skeletonized method, DTI maps showed lower fractional anisotropy (FA) in depressed subjects in the left brain hemisphere, including the anterior thalamic radiation (ATR L), cortical spinal tract (CST L), inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, and superior longitudinal fasciculus (SLF L). Differences in radial diffusivity (RD) were also found. For the VBA using RD, we found different results when we used FW uncorrected and corrected DTI metrics. Relative to the VBA approach, the skeletonized analysis was able to identify more clusters where WM integrity was altered in depressed individuals. Different significant correlations were found between RD and the Patient Health Questionnaire in the CST L, and SLF L. In conclusion, the skeletonized method revealed more clusters than the VBA and individuals with depression showed multiple WM abnormalities, some of which were correlated with disease severity Hum Brain Mapp 38:4690-4702, 2017. © 2017 Wiley Periodicals, Inc.
Keywords: Patient Health Questionnaire; depression; diffusion tensor imaging; free-water DTI; voxel-based analysis.
© 2017 Wiley Periodicals, Inc.