Sema3A drastically suppresses tumor growth in oral cancer Xenograft model of mice

BMC Pharmacol Toxicol. 2017 Jul 6;18(1):55. doi: 10.1186/s40360-017-0163-4.

Abstract

Background: Multiple studies suggest anti-angiogenesis to be a promising and rational option in cancer treatment. Interestingly, the axonal sprouting inhibitor semaphorin 3A (Sema3A), a potent suppressor of tumor angiogenesis in various cancer models, is lowly expressed in human oral cancer. Thus, we hypothesized that overexpression of Sema3A in human oral cancer cells may have potential therapeutic effects.

Methods: The LentiSema3A-EGFP was first constructed and transduced to the tongue squamous cell carcinoma cell line SSC-9. Angiogenesis assay was performed with endothelial cell tube formation assay and chorioallantoic membrane (CAM) assay. Tumor xenografts model was used to evaluate the effect of Sema3a on the tumor growth. Finally, western blot was performed to study the mechanisms of inhibiting angiogenesis by Sema3A.

Results: In vitro and in vivo approaches revealed that Sema3A significantly inhibited tube formation of endothelial cells and reduced angiogenesis in CAM assay. In addition, overexpression of Sema3A in the tongue squamous cell carcinoma cell line SSC-9 resulted in significantly reduced angiogenesis and drastically suppressed tumor growth in mice. Mechanistically, Sema3A inhibited the phosphorylation of VEGFR2, as well as Src and FAK, downstream of the VEGF/VEGFR2 pathway.

Conclusion: Our results demonstrated that overexpression of Sema3A in oral cancer cells drastically suppressed tumor growth by inhibiting angiogenesis. Our findings provide a basis for the development of novel therapeutics in the management of oral cancer.

Keywords: Angiogenesis; Oral cancer; Sema3A; Tumor growth.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Chick Embryo
  • Chorioallantoic Membrane / physiology
  • HEK293 Cells
  • Human Umbilical Vein Endothelial Cells / drug effects
  • Human Umbilical Vein Endothelial Cells / physiology
  • Humans
  • Mice, Nude
  • Mouth Neoplasms / metabolism*
  • Mouth Neoplasms / pathology
  • Neovascularization, Pathologic / metabolism*
  • Neovascularization, Physiologic
  • Semaphorin-3A / genetics
  • Semaphorin-3A / metabolism*
  • Tumor Burden / drug effects
  • Vascular Endothelial Growth Factor Receptor-2 / metabolism
  • Xenograft Model Antitumor Assays

Substances

  • Semaphorin-3A
  • Kdr protein, mouse
  • Vascular Endothelial Growth Factor Receptor-2