Cancer research regarding near-infrared (NIR) agents for chemothermal therapy (CTT) has shown that agents with specific functions are able to inhibit tumor growth. The aim of current study was to optimize CTT efficacy for treatment of colorectal cancer (CRC) by exploring strategies which can localize high temperature within tumors and maximize chemotherapeutic drug uptake. We designed a new and simple multifunctional NIR nanoagent composed of the NIR cyanine dye, polyethylene glycol, and a cyclic arginine-glycine-aspartic acid peptide and loaded with the anti-CRC chemotherapeutic agent, 7-ethyl-10-hydroxy-camptothecin (SN38). Each component of this nanoagent exhibited its specific functions that help boost CTT efficacy. The results showed that this nanoagent greatly strengthens the theranostic effect of SN38 and CTT against CRC due to its NIR imaging ability, photothermal, enhanced permeability and retention (EPR) effect, reticuloendothelial system avoidance, and angiogenic blood vessel-targeting properties. This NIR nanoagent will help facilitate development of new strategies for treating CRC.
Keywords: IR780; SN38; cRGD; chemothermal therapy; colorectal cancer.