Maintaining a youthful appearance is a common desire among the aging population. Loss of elasticity and dermal density constitutes major causes of wrinkle formation during skin aging. In particular, periorbital wrinkles comprise the critical assessment point of skin aging. To address these issues, cosmetic industries have been making increasing efforts to develop efficient agents against wrinkle formation. Arg-Gly-Asp (RGD) is a tripeptide sequence used for surface coating because of its integrin-binding property. However, its pharmacological properties on skin have not yet been studied. Here, we synthesize the novel palmitoyl-Arg-Gly-Asp (Palm-RGD) and investigate its effects on periorbital wrinkle formation by clinical and in vitro studies. We observed that Palm-RGD cream application for 12 weeks decreased global photodamage and skin roughness (R1, R2, R3, and Ra) scores without causing skin irritation. In addition, topical application of Palm-RGD cream time-dependently increased skin elasticity and dermal density. An in vitro study using human dermal fibroblasts (HDFs) demonstrated increased type I procollagen production by Palm-RGD treatment. Furthermore, Palm-RGD suppressed MMP-1 expression in HDFs. Our results demonstrate that Palm-RGD has protective effects against wrinkle formation, likely through the activation of collagen expression and the protection against collagen degradation. Therefore, Palm-RGD could be used as a potential agent for the prevention of wrinkle formation consequent to aging.
Keywords: Collagen; MMP-1; Palmitoyl-RGD; Skin aging; Skin elasticity; Wrinkles.