Ultrathin metasurfaces with local phase compensation deliver new schemes to cloaking devices. Here, a large-scale carpet cloak consisting of an ultrathin metasurface is demonstrated numerically and experimentally in the terahertz regime. The proposed carpet cloak is designed based on discontinuous-phase metallic resonators fabricated on a polyimide substrate, offering a wide range of reflection phase variations and an excellent wavefront manipulation along the edges of the bump. The invisibility is verified when the cloak is placed on a reflecting triangular surface (bump). The multi-step discrete phase design method would greatly simplify the design process and is probable to achieve large-dimension cloaks, for applications in radar and antenna systems as a thin, lightweight, and easy-to-fabricate solution for radio and terahertz frequencies.