The identification of specific environments sustaining emerging arbovirus amplification and transmission to humans is a key component of public health intervention planning. This study aimed at identifying environmental factors associated with West Nile virus (WNV) infections in southern Quebec, Canada, by modelling and jointly interpreting aggregated clinical data in humans and serological data in pet dogs. Environmental risk factors were estimated in humans by negative binomial regression based on a dataset of 191 human WNV clinical cases reported in the study area between 2011 and 2014. Risk factors for infection in dogs were evaluated by logistic and negative binomial models based on a dataset including WNV serological results from 1442 dogs sampled from the same geographical area in 2013. Forested lands were identified as low-risk environments in humans. Agricultural lands represented higher risk environments for dogs. Environments identified as impacting risk in the current study were somewhat different from those identified in other studies conducted in north-eastern USA, which reported higher risk in suburban environments. In the context of the current study, combining human and animal data allowed a more comprehensive and possibly a more accurate view of environmental WNV risk factors to be obtained than by studying aggregated human data alone.
Keywords: Dogs; West Nile virus; environmental risk factors; public health.