First critical repressive H3K27me3 marks in embryonic stem cells identified using designed protein inhibitor

Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):10125-10130. doi: 10.1073/pnas.1706907114. Epub 2017 Sep 1.

Abstract

The polycomb repressive complex 2 (PRC2) histone methyltransferase plays a central role in epigenetic regulation in development and in cancer, and hence to interrogate its role in a specific developmental transition, methods are needed for disrupting function of the complex with high temporal and spatial precision. The catalytic and substrate recognition functions of PRC2 are coupled by binding of the N-terminal helix of the Ezh2 methylase to an extended groove on the EED trimethyl lysine binding subunit. Disrupting PRC2 function can in principle be achieved by blocking this single interaction, but there are few approaches for blocking specific protein-protein interactions in living cells and organisms. Here, we describe the computational design of proteins that bind to the EZH2 interaction site on EED with subnanomolar affinity in vitro and form tight and specific complexes with EED in living cells. Induction of the EED binding proteins abolishes H3K27 methylation in human embryonic stem cells (hESCs) and at all but the earliest stage blocks self-renewal, pinpointing the first critical repressive H3K27me3 marks in development.

Keywords: Rosetta protein design; epigenetics; human early development; human embryonic stem cell; polycomb repressive complex.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Computer Simulation*
  • Histones / chemistry
  • Histones / metabolism*
  • Human Embryonic Stem Cells / cytology
  • Human Embryonic Stem Cells / metabolism*
  • Humans
  • Methylation
  • Polycomb Repressive Complex 2 / chemistry
  • Polycomb Repressive Complex 2 / metabolism*

Substances

  • Histones
  • Polycomb Repressive Complex 2

Associated data

  • PDB/5WP3