Breast cancer metastasizes to lymph nodes or other organs, which determine the prognosis of patients. It is difficult to cure the breast cancer patients with distant metastasis due to resistance to drug therapies. Elucidating the underlying mechanisms of breast cancer metastasis and drug resistance is expected to provide new therapeutic targets. Sphingosine-1-phosphate (S1P) is a pleiotropic, bioactive lipid mediator that regulates many cellular functions, including proliferation, migration, survival, angiogenesis/lymphangiogenesis, and immune responses. S1P is formed in cells by sphingosine kinases and released from them, which acts in an autocrine, paracrine, and/or endocrine manner. S1P in extracellular space, such as interstitial fluid, interacts with components in the tumor microenvironment, which may be important for metastasis. Importantly, recent translational research has demonstrated an association between S1P levels in breast cancer patients and clinical outcomes, highlighting the clinical importance of S1P in breast cancer. We suggest that S1P is one of the key molecules to overcome the resistance to the drug therapies, such as hormonal therapy, anti-HER2 therapy, or chemotherapy, all of which are crucial aspects of a breast cancer treatment.