Giant Enhancement of Cathodoluminescence of Monolayer Transitional Metal Dichalcogenides Semiconductors

Nano Lett. 2017 Oct 11;17(10):6475-6480. doi: 10.1021/acs.nanolett.7b03585. Epub 2017 Sep 25.

Abstract

Monolayer two-dimensional transitional metal dichalcogenides, such as MoS2, WS2, and WSe2, are direct band gap semiconductors with large exciton binding energy. They attract growing attentions for optoelectronic applications including solar cells, photodetectors, light-emitting diodes and phototransistors, capacitive energy storage, photodynamic cancer therapy, and sensing on flexible platforms. While light-induced luminescence has been widely studied, luminescence induced by injection of free electrons could promise another important applications of these new materials. However, cathodoluminescence is inefficient due to the low cross-section of the electron-hole creating process in the monolayers. Here for the first time we show that cathodoluminescence of monolayer chalcogenide semiconductors can be evidently observed in a van der Waals heterostructure when the monolayer semiconductor is sandwiched between layers of hexagonal boron nitride (hBN) with higher energy gap. The emission intensity shows a strong dependence on the thicknesses of surrounding layers and the enhancement factor is more than 500-fold. Strain-induced exciton peak shift in the suspended heterostructure is also investigated by the cathodoluminescence spectroscopy. Our results demonstrate that MoS2, WS2, and WSe2 could be promising cathodoluminescent materials for applications in single-photon emitters, high-energy particle detectors, transmission electron microscope displays, surface-conduction electron-emitter, and field emission display technologies.

Keywords: 2D materials; carrier confinement; cathodoluminescence; photoluminescence; van der Waals heterostructures.

Publication types

  • Research Support, Non-U.S. Gov't