In chronic lymphocytic leukemia (CLL), stabilizing mutations of NOTCH1, affecting up to 10-15% of cases, have been associated to poor prognosis, disease progression and refractoriness to chemotherapy. NOTCH1 mutations are significantly overrepresented in trisomy 12 CLL, a disease subset frequently expressing CD49d, the α4 chain of the very-late-activation-4 integrin, a well-known key regulator of microenviromental interactions, and negative prognosticator in CLL. In the present study, by analysing a wide cohort of 1180 CLL, we observed a very strong association between the presence of NOTCH1 mutations and the expression of CD49d (P<0.0001), occurring also outside the trisomy 12 CLL subset. Using both the MEC-1 CLL-like cells stably transfected with the NOTCH1 intracellular domain and primary CLL cells bearing a mutated or wild-type NOTCH1 gene configuration, we provide evidence that triggering of the NOTCH1 pathway resulted in a positive CD49d expression regulation, which was driven by a NOTCH1-dependent activation of nuclear factot-κB (NF-κB). Consistently, pharmacological inhibition of the NOTCH1 and/or of the NF-κB pathways resulted in impaired NF-κB nuclear translocation with consequent down-modulation of CD49d expression. Altogether, our data link for the first time NOTCH1 mutations to CD49d expression regulation through the involvement of the NF-κB pathway in CLL.