Dendritic cells (DCs) are the main professional antigen-presenting cells for induction of T-cell adaptive responses. Cancer cells express tumor antigens, including neoantigens generated by nonsynonymous mutations, but are poor for antigen presentation and for providing costimulatory signals for T-cell priming. Mounting evidence suggests that antigen transfer to DCs and their surrogate presentation on major histocompatibility complex class I and II molecules together with costimulatory signals is paramount for induction of viral and cancer immunity. Of the great diversity of DCs, BATF3/IRF8-dependent conventional DCs type 1 (cDC1) excel at cross-presentation of tumor cell-associated antigens. Location of cDC1s in the tumor correlates with improved infiltration by CD8+ T cells and tumor-specific T-cell immunity. Indeed, cDC1s are crucial for antitumor efficacy using checkpoint inhibitors and anti-CD137 agonist monoclonal antibodies in mouse models. Enhancement and exploitation of T-cell cross-priming by cDC1s offer opportunities for improved cancer immunotherapy, including in vivo targeting of tumor antigens to internalizing receptors on cDC1s and strategies to increase their numbers, activation and priming capacity within tumors and tumor-draining lymph nodes.
Keywords: T cells; cancer immunotherapy; cross-presentation; cross-priming; dendritic cells.
© The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.