Waxy corn possesses 95-100% amylopectin, compared to 70-75% in normal maize, owing to mutation in Wx gene encoding a granule-bound starch synthase I. Amylopectin is used as an ingredient in textile, adhesive and paper industries. Further, waxy green cob is popular as breakfast item in South Asia and an important constituent of diet in north-eastern states of India as well. We developed a series of waxy inbreds from diverse exotic sources and through introgression breeding. To characterize and unravel the genetic relationships, 24 diverse waxy inbreds were analysed using 77 SSRs distributed throughout the genome. The study generated a total of 203 polymorphic alleles, with a mean of 2.69 alleles per locus. A total of nine unique and 20 rare alleles were detected. The polymorphism information content ranged from 0.08 to 0.68 with an average value of 0.40. Molecular profiling suggested sufficient attainment of homozygosity among the inbreds. Jaccard's dissimilarity coefficient between pairs of genotypes varied from 0.26 to 0.83 which revealed the diverse nature of the inbred lines. Cluster analyses grouped 24 genotypes into three major clusters. Principle coordinate analysis based on SSR also depicted the diverse origin of the genotypes as per the pedigree more reliably than agro-morphological traits. These inbreds were also promising for various cob and grain characteristics including grain yield. The study identified a set of potential cross-combinations that can be planned to develop highly heterotic waxy hybrid combinations. This is the first report of development and characterization of waxy inbreds in India.
Keywords: Diversity; Genetic distance; Maize; SSR; Waxy.