Objective: To assess the level of maturation and proliferation of epithelial cells and the correlation with immunocytochemical expression of adhesion (E-cadherin) and cell differentiation (involucrin) markers.
Methods: Cytopathological samples were obtained from four groups of patients: control (CG, n=30); alcohol/tobacco (ATG, n=31), leucoplakia (LG, n=31), and squamous cell carcinoma (SCCG, n=22). Cytopathological smears were collected from all groups for AgNOR, Papanicolaou and immunocytochemical staining.
Results: There was an increase in anucleated cells in ATG compared to CG and in LG compared to lesion-free groups (P<.05). In addition, there was a higher rate of intermediate cells in lesion-free groups than in LG (P=.001). When these findings were correlated with positive E-cadherin expression, there was a smaller number of anucleated and intermediate cells (P<.05). The proliferation rate was higher in the SCCG than in the CG (P<.05) and in the ATG compared to LG (P<.05). Moreover, cell proliferation increased in the presence of positive E-cadherin expression in the ATG and LG. No statistically significant results were obtained for involucrin analysis.
Conclusion: Cytopathology combined with quantitative techniques such as Papanicolaou, AgNOR, and immunocytochemical expression of E-cadherin detects changes associated with oral carcinogenesis. The innovative approach used in this study allows assessing the expression of cell adhesion (E-cadherin) and differentiation (involucrin) markers by means of oral mucosal cytopathology. The E-cadherin imunocytochemical expression indicated changes associated with the oral carcinogenesis process. An increase in cell proliferation rate in oral squamous cell carcinoma group was associated with the lower immunoexpression of E-cadherin. Cytopathology combined with quantitative techniques and immunocytochemical expression of E-cadherin may detect early alterations associated with oral carcinogenesis.
Keywords: E-cadherin; Papanicolaou staining; cytopathology; involucrin.
© 2017 John Wiley & Sons Ltd.