Predictive Regression Equations of Flowmetric and Spirometric Peak Expiratory Flow in Healthy Moroccan Children

J Clin Diagn Res. 2017 Aug;11(8):SC01-SC04. doi: 10.7860/JCDR/2017/27619.10331. Epub 2017 Aug 1.

Abstract

Introduction: Peak Expiratory Flow (PEF) has never been characterised among healthy Moroccan school children.

Aim: To study the relationship between PEF and anthropometric parameters (sex, age, height and weight) in healthy Moroccan school children, to establish predictive equations of PEF; and to compare flowmetric and spirometric PEF with Forced Expiratory Volume in 1 second (FEV1).

Materials and methods: This cross-sectional study was conducted between April, 2016 and May, 2016. It involved 222 (122 boys and 100 girls) healthy school children living in Ksar el-Kebir, Morocco. We used mobile equipments for realisation of spirometry and peak expiratory flow measurements. SPSS (Version 22.0) was used to calculate Student's t-test, Pearson's correlation coefficient and linear regression.

Results: Significant linear correlation was seen between PEF, age and height in boys and girls. The equation for prediction of flowmetric PEF in boys was calculated as 'F-PEF = -187+ 24.4 Age + 1.61 Height' (p-value<0.001, r=0.86), and for girls as 'F-PEF = -151 + 17Age + 1.59Height' (p-value<0.001, r=0.86). The equation for prediction of spirometric PEF in boys was calculated as 'S-PEF = -199+ 9.8Age + 2.67Height' (p-value<0.05, r=0.77), and for girls as 'S-PEF = -181 + 8.5Age + 2.5Height' (p-value<0.001, r=0.83). The boys had higher values than the girls. The performance of the Mini Wright Peak Flow Meter was lower than that of a spirometer.

Conclusion: Our study established PEF predictive equations in Moroccan children. Our results appeared to be reliable, as evident by the high correlation coefficient in this sample. PEF can be an alternative of FEV1 in centers without spirometry.

Keywords: Forced expiratory volume in 1 second; Peak flow meter; Spirometer.