Topological semimetals can be classified by the connectivity and dimensionality of the band crossings in momentum space. The band crossings of a Dirac, Weyl, or an unconventional fermion semimetal are zero-dimensional (0D) points, whereas the band crossings of a nodal-line semimetal are one-dimensional (1D) closed loops. Here we propose that the presence of perpendicular crystalline mirror planes can protect three-dimensional (3D) band crossings characterized by nontrivial links such as a Hopf link or a coupled chain, giving rise to a variety of new types of topological semimetals. We show that the nontrivial winding number protects topological surface states distinct from those in previously known topological semimetals with a vanishing spin-orbit interaction. We also show that these nontrivial links can be engineered by tuning the mirror eigenvalues associated with the perpendicular mirror planes. Using first-principles band structure calculations, we predict the ferromagnetic full Heusler compound Co_{2}MnGa as a candidate. Both Hopf link and chainlike bulk band crossings and unconventional topological surface states are identified.