NOTCH2 Hajdu-Cheney Mutations Escape SCFFBW7-Dependent Proteolysis to Promote Osteoporosis

Mol Cell. 2017 Nov 16;68(4):645-658.e5. doi: 10.1016/j.molcel.2017.10.018.

Abstract

Hajdu-Cheney syndrome (HCS), a rare autosomal disorder caused by heterozygous mutations in NOTCH2, is clinically characterized by acro-osteolysis, severe osteoporosis, short stature, neurological symptoms, cardiovascular defects, and polycystic kidneys. Recent studies identified that aberrant NOTCH2 signaling and consequent osteoclast hyperactivity are closely associated with the bone-related disorder pathogenesis, but the exact molecular mechanisms remain unclear. Here, we demonstrate that sustained osteoclast activity is largely due to accumulation of NOTCH2 carrying a truncated C terminus that escapes FBW7-mediated ubiquitination and degradation. Mice with osteoclast-specific Fbw7 ablation revealed osteoporotic phenotypes reminiscent of HCS, due to elevated Notch2 signaling. Importantly, administration of Notch inhibitors in Fbw7 conditional knockout mice alleviated progressive bone resorption. These findings highlight the molecular basis of HCS pathogenesis and provide clinical insights into potential targeted therapeutic strategies for skeletal disorders associated with the aberrant FBW7/NOTCH2 pathway as observed in patients with HCS.

Keywords: FBW7; Hajdu-Cheney syndrome; NOTCH inhibitor; NOTCH2; SCF E3 ubiquitin ligase; osteoclast; osteoclastogenesis; osteolysis; osteoporosis; ubiquitination.

MeSH terms

  • Animals
  • Cell Line
  • F-Box-WD Repeat-Containing Protein 7* / genetics
  • F-Box-WD Repeat-Containing Protein 7* / metabolism
  • Hajdu-Cheney Syndrome* / genetics
  • Hajdu-Cheney Syndrome* / metabolism
  • Mice, Knockout
  • Mutation*
  • Osteoporosis* / genetics
  • Osteoporosis* / metabolism
  • Proteolysis*
  • Receptor, Notch2* / genetics
  • Receptor, Notch2* / metabolism
  • Ubiquitination / genetics

Substances

  • F-Box-WD Repeat-Containing Protein 7
  • Fbxw7 protein, mouse
  • Notch2 protein, mouse
  • Receptor, Notch2