Surgical training improves patient care, helps to reduce surgical risks, increases surgeon's confidence, and thus enhances overall patient safety. Current surgical training systems are more focused on developing technical skills, e.g. dexterity, of the surgeons while lacking the aspects of context-awareness and intra-operative real-time guidance. Context-aware intelligent training systems interpret the current surgical situation and help surgeons to train on surgical tasks. As a prototypical scenario, we chose Thoracentesis procedure in this work. We designed the context-aware software framework using the surgical process model encompassing ontology and production rules, based on the procedure descriptions obtained through textbooks and interviews, and ontology-based and marker-based object recognition, where the system tracked and recognised surgical instruments and materials in surgeon's hands and recognised surgical instruments on the surgical stand. The ontology was validated using annotated surgical videos, where the system identified "Anaesthesia" and "Aspiration" phase with 100% relative frequency and "Penetration" phase with 65% relative frequency. The system tracked surgical swab and 50mL syringe with approximately 88.23% and 100% accuracy in surgeon's hands and recognised surgical instruments with approximately 90% accuracy on the surgical stand. Surgical workflow training with the proposed system showed equivalent results as the traditional mentor-based training regime, thus this work is a step forward a new tool for context awareness and decision-making during surgical training.
Keywords: Object recognition; Ontology; Phase recognition; Production rules; Surgical training; Thoracentesis; Tracking.
Copyright © 2017 Elsevier B.V. All rights reserved.