Transiently Thermoresponsive Acetal Polymers for Safe and Effective Administration of Amphotericin B as a Vaccine Adjuvant

Bioconjug Chem. 2018 Mar 21;29(3):748-760. doi: 10.1021/acs.bioconjchem.7b00641. Epub 2017 Dec 13.

Abstract

The quest for new potent and safe adjuvants with which to skew and boost the immune response of vaccines against intracellular pathogens and cancer has led to the discovery of a series of small molecules that can activate Toll-like receptors (TLRs). Whereas many small molecule TLR agonists cope with a problematic safety profile, amphotericin B (AmpB), a Food and Drug Administration approved antifungal drug, has recently been discovered to possess TLR-triggering activity. However, its poor aqueous solubility and cytotoxicity at elevated concentrations currently hampers its development as a vaccine adjuvant. We present a new class of transiently thermoresponsive polymers that, in their native state, have a phase-transition temperature below room temperature but gradually transform into fully soluble polymers through acetal hydrolysis at endosomal pH values. RAFT polymerization afforded well-defined block copolymers that self-assemble into micellar nanoparticles and efficiently encapsulate AmpB. Importantly, nanoencapsulation strongly reduced the cytotoxic effect of AmpB but maintained its TLR-triggering capacity. Studies in mice showed that AmpB-loaded nanoparticles can adjuvant an RSV vaccine candidate with almost equal potency as a highly immunogenic oil-in-water benchmark adjuvant.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetals / adverse effects
  • Acetals / chemistry*
  • Adjuvants, Immunologic / administration & dosage*
  • Adjuvants, Immunologic / adverse effects
  • Adjuvants, Immunologic / therapeutic use
  • Amphotericin B / administration & dosage*
  • Amphotericin B / adverse effects
  • Amphotericin B / therapeutic use
  • Animals
  • Antifungal Agents / administration & dosage
  • Antifungal Agents / adverse effects
  • Antifungal Agents / therapeutic use
  • Delayed-Action Preparations / adverse effects
  • Delayed-Action Preparations / chemistry*
  • Female
  • Mice, Inbred BALB C
  • Nanoparticles / adverse effects
  • Nanoparticles / chemistry
  • Polymers / adverse effects
  • Polymers / chemistry*
  • Respiratory Syncytial Virus Infections / prevention & control
  • Respiratory Syncytial Virus Vaccines / administration & dosage*
  • Respiratory Syncytial Virus Vaccines / adverse effects
  • Respiratory Syncytial Virus Vaccines / therapeutic use
  • Temperature
  • Toll-Like Receptors / agonists*
  • Toll-Like Receptors / immunology
  • Transition Temperature

Substances

  • Acetals
  • Adjuvants, Immunologic
  • Antifungal Agents
  • Delayed-Action Preparations
  • Polymers
  • Respiratory Syncytial Virus Vaccines
  • Toll-Like Receptors
  • Amphotericin B