Background: Stroke is a very time-sensitive pathology, and many new solutions target the optimization of prehospital stroke care to improve the stroke management process. In-ambulance telemedicine, defined by live bidirectional audio-video between a patient and a neurologist in a moving ambulance and the automated transfer of vital parameters, is a promising new approach to speed up and improve the quality of acute stroke care. Currently, no evidence exists on the cost effectiveness of in-ambulance telemedicine.
Objective: We aim to develop a first cost effectiveness model for in-ambulance telemedicine and use this model to estimate the time savings needed before in-ambulance telemedicine becomes cost effective.
Methods: Current standard stroke care is compared with current standard stroke care supplemented with in-ambulance telemedicine using a cost-utility model measuring costs and quality-adjusted life-years (QALYs) from a health care perspective. We combine a decision tree with a Markov model. Data from the UZ Brussel Stroke Registry (2282 stroke patients) and linked hospital claims data at individual level are combined with literature data to populate the model. A 2-way sensitivity analysis varying both implementation costs and time gain is performed to map the different cost-effective combinations and identify the time gain needed for cost effectiveness and dominance. For several modeled time gains, the cost-effectiveness acceptability curve is calculated and mapped in 1 figure.
Results: Under the base-case scenario (implementation cost of US $159,425) and taking a lifetime horizon into account, in-ambulance telemedicine is a cost-effective strategy compared to standard stroke care alone starting from a time gain of 6 minutes. After 12 minutes, in-ambulance telemedicine becomes dominant, and this results in a mean decrease of costs by US -$30 (95% CI -$32 to -$29) per patient with 0.00456 (95% CI 0.00448 to 0.00463) QALYs on average gained per patient. In over 82% of all probabilistic simulations, in-ambulance telemedicine remains under the cost-effectiveness threshold of US $47,747.
Conclusions: Our model suggests that in-ambulance telemedicine can be cost effective starting from a time gain of 6 minutes and becomes a dominant strategy after approximately 15 minutes. This indicates that in-ambulance telemedicine has the potential to become a cost-effective intervention assuming time gains in clinical implementations are realized in the future.
Keywords: cost effectiveness; prehospital; stroke; telemedicine.
©Alexis Valenzuela Espinoza, Stefanie Devos, Robbert-Jan van Hooff, Maaike Fobelets, Alain Dupont, Maarten Moens, Ives Hubloue, Door Lauwaert, Pieter Cornu, Raf Brouns, Koen Putman. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 24.11.2017.